Squeeze theorem –Calculus

name:

1. Find $\lim_{x\to 0}\frac{\sin(x)}{x}$, by using squeeze theorem with the bounds of $\cos(x) \le \sin(x)$ $x \le 1$. Use a graph to model your answer.

2. If $8\cos\left(\frac{\pi x}{6}\right) \le g(x) \le \frac{-2\pi}{\sqrt{3}}(x-2) + 4$ for all x near 2 except perhaps at x=2 itself, what is the value of $\lim_{x\to 2} g(x)$?

3. The graphs of the functions f(x) = x, g(x) = -x, and $h(x) = x \cos\left(\frac{50\pi}{x}\right)$ on the interval $-1 \le x \le 1$ are given at right.

Use the Squeeze Theorem to find $\lim_{x\to 0} x \cos\left(\frac{50\pi}{x}\right)$. Justify.

4. If $1 \le f(x) \le x^2 + 2x + 2$ for all x, find $\lim_{x \to -1} f(x)$. Justify.

5. If $-3\cos(\pi x) \le f(x) \le x^3 + 2$, evaluate $\lim_{x \to 1} f(x)$. Justify