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1. Find lirrtl)s’h;—(x), by using squeeze theorem with the bounds of cos(x) < sin(xYx <1 . Use a graph to
xX—

model your answer.
Answer=1

2.1f 8 cos ("?x) <gx) < iﬁ" (x — 2) + 4 for all x near 2 except perhaps at x=2 itself, what is the value

ofjlci_r)r% g(x)?
Answer:
ik Letf(m):ScosE and h(z) = :4—%(:13—2}-{—4";{@9

6 V3
know that both f and h are continuous functions which means
that the limits of f and h exist at all .
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it : ki
We are given that 8cos — < glz) < —2)+ 4
e are given that 8 cos 6 < glz) < 73 (x —2) + 4 for

alt  near 2 except perhaps at £ = 2 itself, so it follows that

i
U]

This means that
hm f{z) < lim gz} < lim h{z
a2 f{ ) o r«%ﬁg{ } = 749 { }
provided the limits exist

374 We substitute and get

h}nz Bcos % 111113 glz) < 1'1_1_1} (;—?; (z-2)+ 4)‘

Evaluating the limit on the left and the limit on the right gives
4 < limg(z) <4
]
414 By the squeeze theorem,

?_%g(m} = 4.



Calculus Maximus WS 1.2: Properties of Limits
3. The graphs of the functions f(x) ==, g(x) =—x,and

h(x)=xcos(—5E

) on the interval —1 < x <1 are given at right.
x

x—0

Use the Squeeze Theorem to find lim xcos(50 ) Justify.
x
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4. If 1< f(x)<x?+2x+2 forallx, find lim f(x). Justify.
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5. If—3c03(7rr)<f( )5x3 +2, evaluate lim f'(x). Justify
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