Answer Key

1. Find $\lim_{x\to 0} \frac{\sin(x)}{x}$, by using squeeze theorem with the bounds of $\cos(x) \le \sin(x) \le 1$. Use a graph to model your answer.

Answer = 1

2. If $8\cos\left(\frac{\pi x}{6}\right) \le g(x) \le \frac{-2\pi}{\sqrt{3}}(x-2) + 4$ for all x near 2 except perhaps at x=2 itself, what is the value of $\lim_{x\to 2} g(x)$?

Answer:

- Let $f(x)=8\cos\frac{\pi x}{6}$ and $h(x)=\frac{-2\pi}{\sqrt{3}}(x-2)+4$. We know that both f and h are continuous functions which means that the limits of f and h exist at all x.
- We are given that $8\cos\frac{\pi x}{6} \le g(x) \le \frac{-2\pi}{\sqrt{3}}(x-2)+4$ for all x near 2 except perhaps at x=2 itself, so it follows that

$$f(x) \le g(x) \le h(x)$$
 for x near 2.

This means that

$$\lim_{x \to 2} f(x) \le \lim_{x \to 2} g(x) \le \lim_{x \to 2} h(x)$$

provided the limits exist.

3 / 4 We substitute and get

$$\lim_{x\to 2} 8\cos\frac{\pi x}{6} \leq \lim_{x\to 2} g(x) \leq \lim_{x\to 2} \left(\frac{-2\pi}{\sqrt{3}}(x-2) + 4\right).$$

Evaluating the limit on the left and the limit on the right gives

$$4 \leq \lim_{x \to 0} g(x) \leq 4$$

4 / 4 By the squeeze theorem,

$$\lim_{x\to 2}g(x)=4.$$

3. The graphs of the functions f(x) = x, g(x) = -x, and $h(x) = x \cos\left(\frac{50\pi}{x}\right)$ on the interval $-1 \le x \le 1$ are given at right.

Use the Squeeze Theorem to find $\lim_{x\to 0} x \cos\left(\frac{50\pi}{x}\right)$. Justify.

4. If $1 \le f(x) \le x^2 + 2x + 2$ for all x, find $\lim_{x \to -1} f(x)$. Justify.

$$\lim_{x \to -1} | \leq \lim_{x \to -1} | = \lim_{x$$

 $(-1)^{2} + 2(-1) + 2$ =1-2+2=

5. If $-3\cos(\pi x) \le f(x) \le x^3 + 2$, evaluate $\lim_{x \to 1} f(x)$. Justify

Li (-3 costerx) Li (x3+2)
-3 coster 3
Since -3 cos(
$$\pi x$$
) $\leq f(x) \leq x^{3+2}$,
by the Squeeze Theorem,
Li $f(x) = 3 + 08!$

(-3 costex) (x3+2) (x3+2) Lim 3cas (7xx) \leq lom faxx = lim x3+2

1