Name

Date

____Period

Worksheet 4.4—Product & Quotient Rules

Show all work. No calculator unless otherwise stated.

$$\frac{d}{dx}[f(x)g(x)] =$$

1. State the Product Rule: $\frac{d}{dx}[f(x)g(x)] = 2$. State the Quotient Rule:

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] =$$

3. Find the derivative of each. Show all steps, including rewriting and simplifying (except part (e)).

(a)
$$f(x) = (6x + 5)(x^3 - 3)$$
 (b) $h(t) = 2t \sin t + t^2 \cos t$

(b)
$$h(t) = 2t \sin t + t^2 \cos t$$

(c)
$$f(x) = 2x^2 \cot x$$

(d)
$$f(x) = \frac{x + \tan x}{\sin x + 1}$$

(e)
$$f(x) = \left(\frac{x^2 - x - 3}{x^2 + 1}\right) \left(x^2 + x + 1\right)$$
 (f) $f(x) = \tan x \sin x$

(f)
$$f(x) = \tan x \sin x$$

(g)
$$f(x) = \frac{x}{x^2 + 1}$$

(h)
$$f(x) = \frac{\cos x}{x^2}$$

(i)
$$h(x) = \csc^2 x$$

7. Find the equation of the tangent lines to the graph of $y = \frac{x+1}{x-1}$ that are parallel to the line 2y + x = 6.

8. If $f(x) = \frac{3x}{x+2}$ and $g(x) = \frac{5x+4}{x+2}$, verify that f'(x) = g'(x), and explain the relationship between f and g.

- 9. The radius of a right circular cylinder is given by $\sqrt{t+2}$ and its height is $\frac{\sqrt{t}}{2}$, where t is time in seconds and the dimensions are in inches. (Note: $V = \pi r^2 h$)
 - (a) Find an equation for the volume, V(t), of the right circular cylinder as a function of time.

(b) Find the rate of change of volume with respect to time.

10. Determine whether there exist any values of x in the interval $[0, 2\pi)$ such that the rate of change of $f(x) = \sec x$ and the rate of change of $g(x) = \csc x$ are equal.

11. Sketch the graph of a differentiable function f such that f(2) = 0, f' < 0 for x < 2, and f' > 0 for x > 2

12. If g(2) = 3, g'(2) = -2, h(2) = -1, and h'(2) = 4, find f'(2) for

(a) f(x) = 2g(x) + h(x) (b) f(x) = 4 - h(x) (c) $f(x) = \frac{g(x)}{h(x)}$ (d) f(x) = 2g(x)h(x)