Worksheet \# 28: Indefinite Integrals and the Net Change Theorem

1. Compute the definite integral.
(a) $\int_{0}^{2} 4 x^{5}+x^{2}+2 x+1 d x$
(b) $\int_{0}^{\pi / 2}(\sin x+5 \cos x) d x$
(c) $\int_{1}^{16} \frac{1+\sqrt{x}}{\sqrt{x}} d x$
(d) $\int_{1}^{2} \sqrt{\frac{7}{x^{3}}} d x$
2. Find the general indefinite integral.
(a) $\int \frac{15}{x} d x$
(b) $\int \frac{x^{2}-\sqrt{x}}{x} d x$
(c) $\int \cos (x)-\sin (x)+e^{x} d x$
(d) $\int\left(1+\tan ^{2} \theta\right) d \theta$
(e) $\int \sin ^{2} y d y$ [Hint: Use an identity.]
3. Let the velocity of a particle traveling along the x-axis be given by $v(t)=t^{2}-3 t+8$. Find the displacement and distance traveled by the particle from $t=2$ to $t=4$ seconds.
4. The velocity of a particle traveling along the x-axis is given by $v(t)=3 t^{2}+8 t+15$ and the particle is initially located 5 m left of the origin. How far does the particle travel from $t=2$ seconds to $t=3$ seconds? After 3 seconds where is the particle with respect to the origin?
5. (MA 113 Exam IV, Problem 7, Spring 2009). A particle is traveling along a straight line so that its velocity at time t is given by $v(t)=4 t-t^{2}$ (measure in meters per second).
(a) Graph the function $v(t)$.
(b) Find the total distance traveled by the particle during the time period $0 \leq t \leq 5$.
(c) Find the net distance traveled by the particle during the time period $0 \leq t \leq 5$.
6. An oil storage tank ruptures and oil leaks from the tank at a rate of $r(t)=100 e^{-0.01 t}$ liters per minute. How much oil leaks out during the first hour?
7. (Similar to problem 47, p. 397). Draw the region R that lies between the y-axis and the curve $x=2 y-y^{2}$ from $y=0$ to $y=2$. To find the area between a continuous function f and the x-axis on the interval $[a, b]$, we just evaluate $\int_{a}^{b} f(x) d x$. Use some intuition to find the area of R.
