6.3 Boxplots and IQR

ALGEBRA

Write your questions here!

Boxplots:

5 Number Summary:

(Min, Q₁, Med, Q₃, Max)

2016-2017 Golden State Warriors (Regular Season, 50+ games)				
Player	Games Played	Total Number of Points Scored		
J M McAdoo, SF	52	147		
Kevon Looney, SF	53	135		
Kevin Durant, SF	62	1555		
David West, PF	68	313		
Zaza Pachulia, C	70	427		
Patrick McCaw, G	71	284		
Draymond Green, PF	76	776		
Andre Iguodala, SF	76	574		
Shaun Livingston, PG	76	388		
Ian Clark, SG	77	527		
JaVale McGee, C	77	470		
Klay Thompson, SG	78	1742		
Stephen Curry, PG	79	1999		

Constructing a Basic Boxplot

The instructions below are for horizontal boxplots but easily can be adapted for vertical boxplots.

Step 1: Draw a number line. Add a scale that begins at or below the minimum and ends at or above the maximum.

Step 2: Directly above the number line, draw a rectangular box that extends from Q_i to Q_j . Divide the box with a vertical line at the median.

Step 3: Draw two whiskers; one from the middle left side of the box to the minimum and the other from the middle right side of the box to the maximum.

Interquartile Range (IQR):	
First (lower) quartile:	
Third (upper) quartile:	

135, 147, 284, 313, 388, 427, 470, 527, 574, 776, 1555, 1742, 1999

Example Create a boxplot of the distribution of points scored by the 1997 - 1998 Chicago Bulls using the following 5 Number summary. Use the same graph.

Min = 167

Q1 = 288

Med = 416

Q3 = 841

Max = 2357

Interpreting Boxplots

Each part contains 25% of the data

Example: Bean goes fishing and catches 16 fish, displayed by their length in the stemplot below.

Create a boxplot of the fish lengths.

Stem Leaf

0 778999

1 00223579
2 12 key: 1|0=10 inches

- a. Find the Interquartile Range.
- b. Between which two values is approximately 50% of the middle data contained?
- c. Find the range of the data.
- d. What percentage of the fish were greater than 9 inches long?
- e. What percentage of the fish were greater than 7 but less than 16 inches long?

Technology Help: 1-VarStats: $(\bar{x} \text{ is the mean}, S_x = \text{the Standard Deviation, scroll down for 5# summary})$

Zoom Stat (9): Fits the window to your data

SUMMARY:

4.3 Boxplots and IQR

PRACTICE

- 1. Find the 5-number summary and interquartile range for each set of data.
 - a. {9, 11, 15, 17, 23, 24, 33, 33, 38, 38, 45, 46, 51}
 - b. {20, 25, 30, 32, 35, 40, 40, 43, 44, 46, 47, 51, 57, 60}
 - c. {47, 43, 35, 34, 32, 21, 17, 16, 11, 9, 5, 5}

Use the dotplot to create a boxplot. Plot the Boxplot on the same axis above the dotplot. 2.

← Plot your boxplot here, using the dotplot's number line.

	5 # Summary		
1Q=	Median =	3Q=	Max =
	1Q=		

List the 5-number summary for each data set.

- What percent of the students read between 1 and 9 books last summer?
- The middle 50% of students read how many books?
- The top 25% of students read between how many books?
- 3.
- a. Circle the points that represent the 5# summary values. If 2 points are needed to calculate a value, draw a circle around both points.
 - Number of pets

 - 4. Which data set matches this box plot? (More than one answer may be correct.)

- **a.** {23, 25, 26, 28, 28, 28, 28, 30, 31, 33, 41, 43}
- **b.** {23, 23, 24, 25, 26, 27, 29, 30, 31, 33, 41, 43}
- c. {23, 27, 28, 28, 33, 43}
- **d.** {23, 27, 28, 28, 29, 32, 43}
- 5. Describe the boxplot above as skewed left, symmetric, or skewed right and tell why.

Histogram #1 Matches Boxplot _____

Histogram #2 Matches Boxplot _____

Histogram #3 Matches Boxplot _____

10 20 30 40 50 60 70 80 90 100

В

C

- 7. Draw a boxplot and find the interquartile range for each of the following sets of data:
 - a. Shoe size: {6.5, 7, 8.5, 7, 10, 7.5, 10, 5.5, 7.5, 5, 8.5, 10.5, 9, 12, 8.5, 9}
 - b. Games in the World Series: {5, 7, 5, 7, 6, 6, 7, 7, 6, 5, 7, 7, 6, 5, 7}
 - c. Number of Words in Book Title {2, 6, 4, 5, 4, 3, 1, 3, 3, 6, 2, 1, 1, 4, 1}
- 8. The following boxplots are called "Beanplots" because they look weird and freak people out. Describe the relationships between the numbers in the five number summaries for each plot:

SMP #2

9. Multiply: $(2x - 1)^2$

10. Solve the following equation for w: $t + \frac{1}{2}w = \frac{r}{x}$

11. Solve the following system:

$$\begin{cases}
-2x - y = 3 \\
2x + 2y = -8
\end{cases}$$

1. Draw a boxplot of the data set represented in the stemplot to the right.

pulse rate

Data Set #3

2. This boxplot shows the number of interceptions made by the ten interception leaders in 2016-2017 in the NFL.

- a. Can you find the median? Can you find the mean?
- b. From the boxplot you can tell that the maximum number of interceptions was 7. For what other values can you determine the number of interceptions?
- c. Can you find the range? Can you find the Interquartile Range?

A1CC 4.3 EXIT TICKET -

Find the interquartile range for each of the data sets:

a. 4, 5, 6, 8, 9, 11, 13, 16, 16, 18, 20, 21, 25, 30, 31, 33, 36, 37, 40, 41

