1.3 Algebraic Properties

EXPRESSIONS

Numeric Expression
Write your questions here!
COMMUTATIVE PROPERTY
ADDITION

ASSOCIATIVE PROPERTY

ADDITION

MULTIPLICATION

Determine if the expressions are equivalent. If so, state the property used to show equivalence.

	$8-6=6-8$	$8-6=-6+8$
$4 \cdot(x \cdot y)=(4 \cdot x) \cdot y$	$5+(x+2)=(5+x)+2$	$a+(b \cdot c)=(b \cdot c)+a$

PROVE $(x y) z=(z y) x$

$(x y) z$	Given
$Z(x y)$	
$Z(y x)$	
$(z y) x$	

PROVE $x+(y+z)=z+(x+y)$

$$
\begin{array}{ll}
x+(y+z) & \text { Given } \\
(x+y)+z & \\
z+(x+y) & \\
\hline
\end{array}
$$

\qquad
\qquad

Distribute and combine like terms.

$2 h-4(3 h-7)$	$-4(2 x+3)-6$	
$7 d+2(5+3 d)$	$8-3(2 t-5)$	$\frac{2}{3}(3 x+6)+12$

PROVE $(3+x)(2)=6+2 x$

$$
\begin{array}{cc}
(3+x)(2) & \text { Given } \\
(2)(3+x) & \\
6+2 x & \\
\hline
\end{array}
$$

\qquad
SUMMARY:

TRUE/FALSE Circle true or false. If true, circle the property used to determine the expressions equivalent.

1. $7+9=9+7$

TRUE or FALSE
If true, equivalent by...
Commutative Property
Associative Property
Distributive Property
4. $x-8=8-x$

TRUE or FALSE
If true, equivalent by...
Commutative Property
Associative Property
Distributive Property
2. $(8 \cdot 3) 4=8(3 \cdot 4)$

TRUE or FALSE
If true, equivalent by...
Commutative Property
Associative Property
Distributive Property
5. $a c+d c=d c+a c$

TRUE or FALSE
If true, equivalent by.
Commutative Property
Associative Property
Distributive Property
3. $a+(9+b)=(a+9)+b$

TRUE or FALSE
If true, equivalent by...
Commutative Property
Associative Property
Distributive Property
6. $(a+b)^{2}=a^{2}+b^{2}$

TRUE or FALSE
If true, equivalent by...
Commutative Property
Associative Property
Distributive Property

Fill in the reasons for each proof with the correct property used.

11. Mr. Kelly and Mr. Sullivan love the associative property. They refuse to believe that the associative doesn't work for subtraction and division. They both work a problem incorrectly in a weak attempt to prove that the associative property does indeed work for subtraction and division. THEY ARE BOTH WRONG! Correct their feeble attempts at a real mathematical proof by showing both sides do NOT equal each other.

Simplify the expression by using the distributive property.

12. $4(x+3)$	$13.5(m+5)$	$14 .-8(p-3)$
$15 .(2 r-3)(2)$	$16.6 .5(v+1)$	$17 .-(3+x)$
$18 . \frac{3}{2}(8 m-4)$	$19 .-(6 n-9)$	$20 .-\frac{2}{3}(6 n-9)$

Simplify the expression using distributive property and combine like terms.

21. $6+2(y+1)$	$22.2(4 a-1)+a$	$23.6 r-2(r+4)$
24. $-3(m+5)-10$	$25.3-8(w-5)$	$26 .(s-3)(2)+17 s$
Analyze student work.		
27. $\frac{1}{2}(2 m+6)-10$	$28.3(2 a+4)-5(3 a+1)$	$29.5+3\left(2 u+\frac{1}{3}\right)$

30. Mr. Bean and Mr. Brust are really, really bad at the distributive property. They both make huge mistakes using the distributive property. Identify their mistakes and show them how to distribute correctly.

State the property used below.

1. $a(5 \cdot b)=(a \cdot 5) b$

Simplify

2. $3+2(b-4)$
3. The expression $2 m-(8-4 m)+5$ is equivalent to which of the following expressions?
A) $6 m+13$
B) $-2 m-3$
C) $6 m-3$
D) $-2 m+13$
E) none of the above
4. Tommy is planning to make a tomato garden. The rectangular garden must be 4 foot wide. Tommy doesn't how long the garden will be, but would like 3 feet per tomato plant plus 1 foot extra at each end of the garden. Tommy doesn't know how many tomato plants he will buy. The diagram below shows the dimensions of the garden for x amount of tomato plants. Create a simplified expression to represent both the area and perimeter of the garden.

Area:
Perimeter:
$3 x+2$

Now, use your expression to determine both the area and perimeter of the garden if Tommy plants 8 tomato plants.

EXIT TICKET

