Write your questions and thoughts here!

1st Equation: 3x + 3y = 3

2nd Equation: x - 2y = 4

3rd Equation:

Notes

Opposite Coefficients

$$\begin{array}{ccc}
3x + y = 6 \\
x - y = 2
\end{array}$$

Change One Equation

$$2. \quad \begin{array}{l}
-10x + 3y = -7 \\
5x + 4y = 9
\end{array}$$

3.
$$-2x - 4y = -4$$
$$-x - 8y = -8$$

Change BOTH Equations

$$4. \quad \begin{array}{l} 5x + 4y = 17 \\ 3x + 3y = 9 \end{array}$$

Rearrange First

$$5. \quad 4y = 6x$$
$$4x - 3y = 2$$

Which method would be best for solving this system, Substitution or Elimination? Circle the part of the system that justifies your answer.

$$6. \quad 4x - y = -11 \\ -2x + y = -2$$

$$\begin{array}{ccc}
 x - 3y &= -7 \\
 7. & 3x + 7y &= -2
 \end{array}$$

$$7x + 4y = 6
7x - 3y = 10$$

NO SOLUTION		INITE SOLUTIONS
$ 9. 12x + 10y = -14 \\ 6x + 5y = -9 $	$10. \begin{array}{r} 4x + 2y \\ 8x + 4y \end{array}$	y = 4 $y = 8$
I		

3.5 Elimination Method – Solving Systems of Equations

Practice

Algebra 1

Now summarize what you learned!

Which method would be best for solving this system, Substitution or Elimination? Circle the part of the system that justifies your answer.

1. $3x + 9y = 9$ $x + 3y = 3$	$ \begin{array}{ccc} -3x - 4y &= 5 \\ 2. & 3x + 2y &= -8 \end{array} $	$3. \ 4x - 3y = -14 \\ 6x + 3y = -9$	$4. \ \ \frac{2x + 3y = 6}{x = 3y - 12}$
3x = y $5. 4x - 2y = 2$	$ 6. 3x - 13y = -11 \\ 5x + y = 5 $	$ 7. 8x - 2y = 12 \\ -4x - 5y = 8 $	$ 8. 3x + 4y = 10 \\ 5x - 4y = 8 $
	,		,

Solve	each	system	of	equations u	ısing	ELIMINATION

9.
$$6x - 8y = -4$$
$$4x + 2y = -10$$

12.
$$4x + 4y = -4$$
$$5x + 3y = -9$$

13.
$$2x + 6y = -2$$
$$x - 2y = 5$$

15.
$$15x + 3y = 7$$
$$1 - 5x = y$$

16.
$$2x + 6y = 14$$
$$x + 3y = 7$$

17.
$$10x + 5y = -15$$
$$3y + 5 = -5x$$

18.	2x + 4y = -9
	3x + 5y = -12

19.
$$9x - 6y = 3 \\
6x - 4y = 2$$

20.
$$6x + 2y = 4$$
$$-4x - 5y = -10$$

$$21. \quad 2x = 4y \\ 3x + 3y = 18$$

22.
$$x + y = 3$$

 $6x + 4y = 11$

$$\begin{array}{r}
 4x - 3y = -2 \\
 -8x + 6y = -8
 \end{array}$$

Simplify each expression

24.
$$(4p+3)(3p-9)$$

25.
$$(3a^2-4)+(5a^2-2)$$

26.
$$(5c^2 + 2c + 8) - (4c^2 - 5)$$

27. Solve
$$d = rt + w$$
 for r

28. Solve
$$g = \frac{c}{x}$$
 for x

3.5 Elimination Method – Solving Systems of Equations

<u>Practice check</u>: The next two questions are just like the practice, but we provide no answers. If you can't do these problems, then you're definitely not ready for a Mastery Check!

$$\begin{array}{r}
 4x - 5y = 17 \\
 6x + 2y = 16
 \end{array}$$

- 31. You have two 5-gallon buckets. One is filled with water, but has a slow leak, leaking out water at 7 ounces per minute. The other is empty but is being used to catch water from a leaky faucet at a rate of 4 ounces per minute. Assume they both start at the same time. *Hint:* There are 128 ounces in a gallon.
 - a. Identify the unknowns and assign them variables. Explain the meaning of each variable below.
 - b. Set up a system of equations to model this scenario.
 - c. Use elimination to solve the system.
 - d. How long will it take for the buckets to have the exact same amount of water?
 - e. How much water will there be (in gallons)?

Exit Ticket

At a state fair, there is a game where you throw a ball at a pyramid of cans. If you knock over all of the cans, you win a prize. The cost is 3 throws for \$1, but if you have an armband you get 6 throws for \$1. The armband costs \$10.

- a. The cost equation for 3 throws is $C = \frac{1}{3}t$ where C is the cost and t is the number of throws. Write the cost equation for the other option with the armband.
- b. How many throws would it take to cost the same amount with either option.