Motion Calculus

Name:

Given a position function, its derivative is a ______ function .

Given velocity function, its derivative is a _____ function .

AVERAGE VELOCITY in the interval (a,b), given p(x) is a position function, is...

AVERAGE ACCELERATION in the interval (a,b), given v(x) is the velocity function, is...

A particle is moving to the right (or up) when is positive	A particle	is moving to	the right (or	r up) when		is positive
--	------------	--------------	---------------	------------	--	-------------

A particle's position is increasing when ______ is positive.

A particle is moving to the left (or down) when its ______ is negative

A particle's position is decreasing when its ______ is negative.

A particle is at rest (or is stopped) when its ______ is zero

A particle is speeding up if its ______ and _____ have the same sign (at that point)

A particle is moving towards the origin when its ______ and _____ have opposite signs

Displacement is the ______ in positions between two times. Can displacement be negative?

Total distance traveled by a particle is the sum of the amounts it displaces between the start and all stop(s) and the end. Can distance be negative?

Motion practice

Calculus

Given the following position function for an object traveling in a straight line, supply reasoning for your answer(s), either in words or well organized mathematics or both, for each problem below. You may use a calculator. Let's assume t = hours and x(t) = miles.

 $x(t) = e^{-2t} + sin^2(3-t) - \frac{1}{2}$ over the time interval [0,2].

1) When does the object stop?

2) What is the object's displacement from [0,2]

3) Is the object speeding up or slowing down at $t = \frac{1}{2}$?

4) Determine the object's total distance traveled from [0,2]

Name:

5) A particle moves along the x-axis such that its position at any time t where $0 \le t \le 5$ is given by the function $x(t) = 2t^3 - 15t^2 + 36t - 22$

- a) determine the velocity and acceleration functions
- b) what is the particle's average velocity from t = 2 to t = 4
- c) what is the particle's instantaneous velocity at t = 3
- d) when is the particle at rest
- e) when does the particle move to the right
- f) what is the total distance traveled by the particle
- g) what is the particle's maximum velocity
- h) is the particle moving towards or away from the origin at t = 1
- i) is the particle speeding up or slowing down at t = 1
- j) what is the displacement of the particle over the interval

6) A particle starts at time t = 0 and moves on a number line so that its position at time t seconds is given by $x(t) = (t-2)^3(t-6)$. Show all work that leads to your answers or justify your answer in words.

- a) Write the particle's velocity function
- b) When does the particle stop?
- c) Does the particle change direction at all its stops?
- d) What is the particle's displacement from t = [1,6]?
- e) What is the total distance the particle traveled from t = [1,6]
- f) Set up an equation that could calculate a time when the particle's instantaneous velocity is equal to its average velocity over the interval [1,6]. Which theorem does this illustrate?