Calculus Ch 6 Test Review Name: Key

Calculator Allowed!

- Solutions to the differential equation $\frac{dy}{dx} = xy^3$ also satisfy $\frac{d^2y}{dx^2} = y^3(1 + 3x^2y^2)$. Let y = f(x) be a particular solution to the differential equation $\frac{dy}{dx} = xy^3$ with f(1) = 2.
 - (a) Write an equation for the line tangent to the graph of y = f(x) at x = 1.
 - (b) Use the tangent line equation from part (a) to approximate f(1.1). Given that f(x) > 0 for 1 < x < 1.1, is the approximation for f(1.1) greater than or less than f(1.1)? Explain your reasoning.
 - (c) Find the particular solution y = f(x) with initial condition f(1) = 2.
 - (a) $f'(1) = \frac{dy}{dx}\Big|_{(1,2)} = 8$

An equation of the tangent line is y = 2 + 8(x - 1).

(b) $f(1.1) \approx 2.8$ Since y = f(x) > 0 on the interval $1 \le x < 1.1$, $\frac{d^2y}{dx^2} = y^3(1+3x^2y^2) > 0$ on this interval.

Therefore on the interval 1 < x < 1.1, the line tangent to the graph of y = f(x) at x = 1 lies below the curve and the approximation 2.8 is less than f(1.1).

(c)
$$\frac{dy}{dx} = xy^3$$

$$\int \frac{1}{y^3} dy = \int x dx$$

$$-\frac{1}{2y^2} = \frac{x^2}{2} + C$$

$$-\frac{1}{2 \cdot 2^2} = \frac{1^2}{2} + C \Rightarrow C = -\frac{5}{8}$$

$$y^2 = \frac{1}{\frac{5}{4} - x^2}$$

$$f(x) = \frac{2}{\sqrt{5 - 4x^2}}, \quad \frac{-\sqrt{5}}{2} < x < \frac{\sqrt{5}}{2}$$

 $2: \begin{cases} 1:f(1) \\ 1: answer \end{cases}$

2: { 1 : approximation 1 : conclusion with explanation

1 : separation of variables 1: antiderivatives 1: constant of integration

1 : solves for y

Note: max 2/5 [1-1-0-0-0] if no constant of integration Note: 0/5 if no separation of variables

37.0869 hrs

FREE-RESPONSE QUESTION

A calculator may not be used on this question.

- 3. A differentiable function f(x) is defined such that, for all values of x in its domain, $f(x) = 3 + \int_{0}^{x^{1}} f(\sqrt[3]{t}) dt$.
 - a. What is the domain of f(x)?
 - b. For what value(s) of x is t(x) = 3?
 - c. Show that $f'(x) = 3x^2 f(x)$.
 - d. Solve the differential equation in (c) to find f(x) in terms of x only.

FREE RESPONSE

	Solution	Pos	ssible points
a.	$\sqrt[3]{t}$ is defined for all real numbers, so x^3 can be any real number; therefore x can be any real number.	1:	answer
b.	$f(x) = 3$ when $x^3 = 8$; therefore $x = 2$ because the integral from 8 to 8 = 0.	1:	answer
C.	$f'(x) = f(\sqrt[3]{x^3}) \cdot 3x^2$, so $f'(x) = 3x^2 f(x)$.	2:	1: argument of $f(x)$ 1: Chain Rule
d.	Rewrite $f'(x) = 3x^2 f(x)$ as $\frac{dy}{dx} = 3x^2 y$. Separating variables, $\int \frac{dy}{y} = \int 3x^2 dx$ $\ln y = x^3 + C$ $y = e^{x^3 + C} = Ce^{x^3}$. Using $f(2) = 3$ (from answer b), we get $3 = Ce^8 \Rightarrow C = 3e^{-8}$. Therefore $y = 3e^{-8}e^{x^3}$, hence $f(x) = 3e^{x^3 - 8}$.	5:	1: separation of variables 2: correct antiderivatives 1: includes constant of integration 1: solves correctly for constant

$$3 = 3 + \int_{8}^{3} f(3)E)dt$$

 $3 = 3 + \int_{8}^{2} f(3)E)dt$
 $3 = 3 + 0$

x=2

Graphing Calculator Allowed

- Use integration to find a general solution of the differential equation.
 - y = 686x5ex6dx $v = \frac{x^{6}}{6}e^{x^{6}} + C$
 - b) $v = 6e^{x^6} + C$ e) $y = \frac{1}{5}e^{16} + C$
 - $v = 5e^{x^6} + C$
 - **e)** $v = \frac{1}{6}e^{x^6} + C$ Learning Objective: Identify the general Exercise Group: 41-52 Ins: e Difficulty: Medium
- Section: 6.1 solution of a differential equation Type: Skill
- **2.** Which of the following is a solution of the differential equation $xy' 3y = x^{\dagger}e^{x}$? a) $v = x^{1}e^{x}$

 - $y = 5e^{2x} 6\sin 2x$
 - $v=4e^{-2x}$
 - $y = \ln x$ d)
 - $y = 3x^4e^{2x}$ e)
 - Learning Objective: Identify the solution of Exercise Group: 21-28 Difficulty: Medium Section: 6.1 a differential equation Type: Skill
- Which of the following is a solution of the differential equation $y^{(1)} 256y = 0$?
 - $y = x^2 (4 + e^x)$
 - $y = 3 \ln x$
 - c): $y = e^{-4\tau}$
 - $v = -4x\cos x$
 - $v = 2e^{4x} + x \sin x$

Exercise Group: 13-20 Difficulty: Easy Section: 6.1 Type: Skill differential equation

Learning Objective: Identify the solution of a

that satisfies the initial condition r(0)=0. Find the particular solution of the differential equation $\frac{dr}{r}$ $2e^{-r} = e^{-2s} - 2C_{2-1}$ $\ln(2e^{-r}) = \ln(e^{-2s} - 2C_{2-1})$ $\ln(2+\ln e^{-r}) = \ln(e^{-2s} - 2C_{2-1})$

- $\frac{dr}{dr} = \frac{ds}{c^{2s}}$
 - $r = \ln \left| \frac{1-e}{1} \right| e^{-r} dr = -\frac{1}{2} \int_{-2}^{2} e^{-r} dr$
- -e-r=-1/2 e-28+Cz-1
- Exercise Group: 15-24 Inst b Difficulty: Medium carnendar solution of the given differential equation with the given initial solution, type: Application

0= ln2-ln(e+ C ln2=-ln(1-c) Learning Objectives Calculate the entitle confection Section: 63 $= 2 \ln 2 - \ln (e^{-2S} + 1)$

 $u = x^{6}$ $du = 6ex^{5}dx$

5. Find an equation of the graph that passes through the point (7,9) and has the slope
$$y' = \frac{8y}{9x}$$
.

(a)
$$y = 9\left(\frac{x}{7}\right)^3$$

b)
$$y = 9(7x)^{\frac{1}{2}}$$

$$y = 7 \left(\frac{8x}{9}\right)^{6}$$

$$d) y = xe^{\frac{1}{1+\epsilon}}$$

e)
$$y = \frac{9}{8x} - \ln(7x) + 9$$

Difficulty: Medium Ans: a Exercise Group: 25-28 Learning Objective: Calculate the equation

Write and solve the differential equation that models the following verbal statement. Evaluate the solution at the specified value of the independent variable, rounding your answer to four decimal places:

The rate of change of y is proportional to y. When x = 0, y = 56 and when x = 2, y = 72. What is the value of v when x = 10?

(a)
$$v(10) = 196.7480$$

b)
$$y(10) = 200.4980$$

c)
$$y(10) = 202.9580$$

d)
$$y(10) = 192.9980$$

e)
$$v(10) = 187.8280$$

$$v(10) = 187.8280$$

Ans: a Difficulty: Medium differential equation model Section: 6.2

Exercise Group: 21-24 Type: Application

Inly1 = Kx+C

en (72) - en (50) = K = . 12565

\$ lny+C,= = | lnx+C \$ lny== | lnx+Cz-

Find the exponential function $v = Ce^{4x}$ that passes through the two given points. Round your values of C and k to four decimal places.

$$v = 3e^{-1.067}$$

b)
$$v = 3e^{0.1563 \, \text{r}}$$

c)
$$v = 3e^{0.2235v}$$

d)
$$y = 3e^{-0.9027\tau}$$

e)
$$v = 3e^{-0.4194x}$$

$$\frac{1}{3} = 3e^{K(5)}$$
 $\frac{1}{3} = 3e^{K(5)}$
 $\frac{1}{4} = e^{5K}$
 $\frac{1}{4} = e^{5K}$
 $\frac{1}{4} = \frac{1}{4}$
 $\frac{1}{4} = \frac{1}{4}$

Ins: e Difficulty: Easy Exercise Group: 25-28 Learning Objective: Identify an exponential equation given its graph Section: 6.2 Type: Skill

d)

b)

e)

c)

Difficulty: Medium Ans: a for a differential equation

Exercise Group: 57-60 Section: 6.1

Type: Skill

Learning Objective: Identify the slope field

Sketch the slope field for the differential equation y' = y - 4x and use the slope field to sketch the solution that passes through the point (1,3).

a) '

d)

b)

e)

c)

Difficulty: Easy Exercise Group: 61-64 a differential equation and sketch a particular solution

Learning Objective: Identify the slope field for Section: 6.1 Type: Skill

- /O. The rate of change of N is proportional to N. When t = 0, N = 180 and when t = 1, N = 480. What is the value of N when t = 2? Round your answer to three decimal places.
 - 1.230.000
 - 1,280,000
 - C) 59.112
 - d) 1.310.000
 - 0) 3,840,000

Ins: h Difficulty: Medium Exercise Group: 21-24 differential equation model Section: 6.2 Type: Skill

Learning Objective: Create and solve a

15. A calf that weighs 60 pounds at birth gains weight at the rate $\frac{dw}{dt} = k(1200 - w)$, where w is weight in

pounds and t is time in years. If the animal is sold when its weight reaches 700 pounds, find the time of sale using the model $w = 1200 - 1140e^{-12t}$. Round your answer to two decimal places.

700 = 1200 - 1140e-1.26

x dv = 9+11V-V

- a) 0.69 year
- b) 5.03 years
- c) 2.05 years
- d) 0.49 year

£ = .6868 = .69 years e) 1.47 years Ans: a Difficulty: Medium Exercise Group: 63 Learning Objective: Solve an exponential equation in applications Section: 6.3 Type: Application

/(a) A calf that weighs 55 pounds at birth gains weight at the rate $\frac{dw}{dt} = k(1100 - w)$, where w is weight in pounds and t is time in years. What is the maximum weight of the animal if one uses the model

 $w = 1100 - 1045e^{-11t}$?

- 1045 lb
- **b**) 655 lb
- (c) 22 4 1 100 lb
- 1700 lb
- c) 1155 lb
- Difficulty: Medium Exercise Group: 63 Learning Objective: Calculate the relative extrema of a function in applications Section: 6.3 Type: Application
- 17. Solve the homogeneous differential equation $y' = \frac{9x + 11y}{x}$.

$$y = \frac{9}{11}x + C \cdot x'$$

b)
$$y = -\frac{11}{8}x - x^{22} + C$$

$$v = -\frac{9}{10}x + C \cdot x^{11}$$

d)
$$v = \frac{9}{10}x^{11} + C$$

e)
$$v = \ln(9x + 11) + C$$

 $\frac{dV}{dV+9} = \frac{dy}{dy}$ Ins: c Difficulty: Medium Exercise Group: 39-44 Learning Objective: Calculate the given homogeneous differential equation Section: 6.3 Type: Application

- $\frac{dy}{dx} = \frac{9x + 1/9}{x} dx$ $V + x \frac{dV}{dx} = \frac{9x + 1/9}{x} dx$ $V = V + x \frac{dV}{dx}$ $V = V + x \frac{dV}{dx}$
- V+x dv = 9+11V dx 10 On 110V+91 = Inx +C (10V+4) = X+C

Graphing Calculator Is Not Allowed!

1. Solve the differential equation $y' = \frac{\sqrt{x}}{2x}$

a)
$$y = \sqrt{\frac{2}{3}x^{3/2} + C}$$

b)
$$2y^2 = 4x^{3/2} + C$$

c)
$$6y^2 = 2x^{1/2} + C$$

d)
$$6y^2 = 4x^{3/2} + C$$

e)
$$4y^2 = 6x^{3/2} + C$$

Difficulty: Medium Ans: d solution of a differential equation

Exercise Group: 1-10 Learning Objective: Identify the general Section: 6.2 Type: Skill

2. Solve the differential equation.

$$y' = x(-5+y)$$

a)
$$|n|-5+y|=x^2+C$$

b)
$$\ln \left| -5 + y \right| = x + C$$

c)
$$3 \ln |-5 + y| = x^3 + C$$

d)
$$4 \ln |-5 + y| = x^4 + C$$

e)
$$2 \ln |-5 + y| = x^2 + C$$

Ans: e Difficulty: Medium solution of a differential equation

 $\int \frac{dy}{-5+y} = \int \times dx$ $\ln|-5+y| = \sum_{z} + C,$ 22n/-5+4/= x2+C

Exercise Group: 1-10 Learning Objective: Identify the general Type: Skill

Solve the differential equation.

$$v' = \frac{v}{v}$$

$$a) 2 \ln y = -x^{x} + C$$

$$p) \qquad i_{-1} = i_{i_1} + C$$

c)
$$2 \ln v = x^2 + C$$

d)
$$v^2 = x^2 + 0$$

(c)
$$p^2 = -r^2 + ($$

Ins. d. Difficulty: Medium Exercise Group = 1-10 Learning Objective: Identify the general solution of a differential equation — Section: 6.2 Type: Skill

Section: 6.2

 \mathcal{H}_{\bullet} . Use integration to find a general solution of the differential equation.

$$\frac{dv}{dr} = -2x^3 - 9x$$

a)
$$2x^4 = 9x^2 + C$$

b)
$$6x^2 - 9 + C$$

(c)
$$3 - \frac{1}{2}x^4 - \frac{9}{2}x^2 + C$$

d)
$$2x^2 = 9 + C$$

e)
$$\frac{1}{2}x^4 = \frac{9}{2}x^2 + x + C$$

Ans: c Difficulty: Medium Exercise Group: 41-52 Learning Objective: Identify the general solution of a differential equation Section: 6.1 Type: Skill

Use integration to find a general solution of the differential equation, (dy =)-8x2-7x dx

$$\frac{d\mathbf{v}}{d\mathbf{x}} = -8x^2 - 7x$$

a)
$$y = -8x^2 - 7 + C$$

b)
$$y = 8x^3 - 7x^2 + C$$

c)
$$v = -16x - 7 + C$$

(d)
$$v = -\frac{8}{3}x^3 - \frac{7}{2}x^2 + C$$

e)
$$y = -8x^2 - 7x + C$$

Ans: d Difficulty: Medium Exercise Group: 41-52 Learning Objective: Identify the general solution of a differential equation Section: 6.1 Type: Skill

Use integration to find a general solution of the differential equation.

$$\frac{\partial y}{\partial x} = x\sqrt{-x+5}$$

a)
$$y = \frac{2}{5}(-x+5)^{5/2} - \frac{10}{3}(-x+5)^{3/2} + C$$

b)
$$y = \frac{2}{5}(-x+5)^{3/2} - \frac{10}{3}(-x+5)^{5/2} + C$$

c)
$$y = \frac{2}{5}(-x+5)^2 - \frac{10}{3}(-x+5) + C$$

d)
$$y = (-x+5)^{3/2} - (-x+5)^{5/2} + C$$

e)
$$y = \frac{2}{5}(-x+5)^{3/2} + \frac{10}{3}(-x+5)^{5/2} + C$$

Difficulty: Medium Exercise Group: 41-52 Learning Objective: Identify the general solution of a differential equation

Section: 6.1 Type: Skill Use integration to find a general solution of the differential equation $\frac{dy}{dx} = 5x\cos(15x^2)$.

a)
$$\frac{\sin(30x^2)}{3} + C$$

(b)
$$\frac{\sin(15x^2)}{6} + C$$

c)
$$\frac{\cos(15x^2)}{6x} + C$$

$$\frac{2x\sin(30x^2)}{3x} + C$$

e)
$$\frac{r\cos(15x^2)}{6} + C$$

Difficulty: Medium solution of a differential equation

$$\int dy = \int 5 \times \cos(15x^2) dx \qquad u = 15x^2$$

$$y = \int 6 (5x) \cos(15x^2) dx \qquad du = 30 \times d$$

$$y = \frac{1}{6} \int \cos(u) du$$

$$y = \frac{1}{6} \int \cos(u) du$$

$$y = \int \cos(u) du$$

(dy= 5x cos (15x2) dx

 $y = -8x^{3} - 7x^{2} + C$

(dy = |x 1-x+6 dx

y = /- x (u) " du

 $y = \frac{2(-x+5)^{5/2}}{5} = \frac{10}{3}(-x+5)^{3/2} + ($

y= (-(-4+5)(4) 1/2 du

y = S(u - 5)(us" 14

y= Su3/2 5u1/2 dy

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \leq i \Lambda (15 \times 2) + C$$
Learning Objective: Identify the general

Exercise Group: 41-52 Section: 6.1 Type: Skill Write and solve the differential equation that models the following verbal statement:

 \mathcal{L} The rate of change of Q with respect to x is proportional to 40 - x.

a)
$$\frac{dQ}{dx} = k(40 - x)^{-1}, Q = -k \ln(40 - x) + C$$

b)
$$\frac{dQ}{dx} = k(40 - x)$$
, $Q = -\frac{k}{2}(40 - x)^2 + C$

c)
$$\frac{dQ}{dx} = k(40 - x)^2$$
, $Q = -\frac{k}{3}(40 - x)^3 + C$

d)
$$\frac{dQ}{dx} = k(40 - x)^3$$
, $Q = -\frac{k}{4}(40 - x)^4 + C$

e)
$$\frac{dQ}{dx} = k(40 - x)^{-1}$$
, $Q = -k \ln(40 - x)^2 + C$

Difficulty: Medium . Exercise Group: 11-14 Learning Objective: Create and solve a differential equation model Section: 6.2 Type: Application

9. Find the general solution of the differential equation $\frac{dv}{dx} = \frac{9x^2}{10x^2}$

$$v = \frac{9}{10} \, \bar{v}^1 + C$$

b)
$$y = \sqrt{\frac{10}{9}x^3 + C}$$

$$v = \sqrt{9x^3 + 10C}$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$$

$$v = \sqrt[4]{\frac{x^2}{10} + C^2}$$

Difficulty: Medium Exercise Group: 1-14 Learning Objective: Calculate the general solution of the given differential equation Section: 6.3 Type: Application

10. Find the particular solution of the differential equation 19x + 4yy' = 0 that satisfies the initial condition y =

8 when x = 3, where $19x^2 + 4y^2 = C$ is the general solution.

a)
$$19x^2 + 4y^2 = 1252$$

$$19x^2 + 4y^2 = 427$$

c)
$$19x^2 + 4y^2 = 235$$

d)
$$19x^2 + 4y^2 = 203$$

e)
$$19x^2 + 4y^2 = 265$$

Ans: h Difficulty: Easy Exercise Group: 35-40 Learning Objective: Identify the particular solution of a differential equation Section: 6.1 Type: Skill

Find the function y = f(t) passing through the point (0.18) with the first derivative $\frac{dy}{dt} = \frac{2}{3}y$.

$$v(t) = 18e^{3t}$$

h)
$$y(t) = e^{\frac{t}{3}t^2} + 18$$

c)
$$y(t) = \frac{2}{3}t^2 + 18$$

d):
$$_{1}A(t) = 18e^{\frac{2}{3}t}$$

$$v(t) = e^{\frac{1}{3}t} + 18$$

Difficulty: Medium

given its derivative and a point that it passes through

 $\frac{dy}{y} = \frac{2}{3}dt$ lny=3x+C

 $19(3)^{2} + 9(8)^{2} = C$

C= 427

Exercise Group: 17-20 Learning Objective: Identify a function $q = 186^{2/3}$ that it passes through Section: 6.2 Type: Skill

12. Use the differential equation $\frac{dy}{dx} = \frac{3x}{y}$ and its slope field to find the slope at the point (-5,5).

$$\frac{3(-5)}{5} = \frac{-15}{5} = \frac{-3}{5}$$

- a) -75
- b) -25
- c) 15
- d) -15
- e) +3

Ans: e Difficulty: Easy Exercise Group: 53-56 Learning Objective: Evaluate a differential equation to find the slope of lines tangent to the solution of the differential equation Section: 6.1 Type: Skill

13 Sketch a few solutions of the differential equation on the slope field and then find the general solution

$$\frac{dy}{dx} = 4 - y$$

- a) $y = C \ln(4 y)$
- (b) $1 y = 4 + Ce^{-x}$
 - $v = 4 2Ce^x$
 - d) $y = C \ln(y-4)$
- $v = 4x + Ce^{-x}$

Ins: b Difficulty: Medium Exercise Group: 49-52 Learning Objective: Solve a differential equation using separation of variables Section: 6.3 Type: Skill

Heavising whether the function $f(x, y) = x^{1} + 4x^{2}y^{2} - 7y^{1}$ is homogeneous and determine its degree if it

- homogeneous, the degree is
- b) homogeneous, the degree is 5 homogeneous, the degree is 2
- d) homogeneous, the degree is 2 homogeneous, the degree is 3
- e) not homogeneous

Ins: e Difficulty: Easy Exercise Group: 31-38 Learning Objective: Determine if the given function is homogeneous and find its degree Section: 6.3 Type: Application

£: 6 .