\qquad

REVIEW

DATE: \qquad

STEPS FOR FACTORING

1. Factor out the Greatest Common Factor if possible
2. Look for a Special Case (Difference of Squares)
3. Factor
4. Check your answer by multiplying

REMEMBER:

We don't like the leading term to be negative!

$$
-x^{2}+7 x-12
$$

Just factor out the negative!
$-\left(x^{2}-7 x+12\right)$
And then factor -
$-(x-3)(x-4)$

Answer the following. Justify your answer by showing work!

1. Is $(7 x-2)(3 x+5)$ the factored form of $21 x^{2}-29 x-3$?
2. Is $4 y(y-9)$ the factored form of $4 y^{2}-36 y$?

Factor the following if possible. Check your answer by multiplying!

3. $t^{2}-9 t-36$	4. $m^{2}-4$	$5.4 x^{2}-8 x$
6. $5 p^{2}+14 p-3$	$7 .-16 n^{2}-20 n+6$	$8 . d^{3}-d^{2}-20 d$
Solve the following by factoring.		

9. $x^{2}-7 x-30=0$
10. $0=2 h^{2}+14 h+24$

Solve the following by factoring.

11. $3 g^{2}-10 g=8$
12. $0=16 b^{3}-36 b$
13. $x^{2}+8 x+2=-10$
14. $5 m^{2}+20 m=0$
15. The average monthly temperature of an Alaskan town is modeled by the equation $T(m)=-m^{2}+13 m-22$ where m stands for month (January $=1$, Feb = 2, March $=3$, etc...) and T stands for Temperature in Fahrenheit.
a. Find $T(5)$. Use a sentence to explain its meaning in the context of this problem.
b. What month(s) is the average temperature zero?
16. The area of the rectangle shown below is 24 feet 2. Find the perimeter of the rectangle.

